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Abstract
We discuss the explicit construction of the Schrödinger equations admitting
representation through some family of general nonorthogonal polynomials. The
specific choice of the third-order polynomial coefficient functions, that lead to
quasi-solvable families of Schrödinger potentials, is considered in detail.

PACS numbers: 03.65.-w, 03.65.Ge, 03.65.Ca, 02.90.+p

1. Introduction

The known exactly solvable potentials in one-dimensional quantum problems, including those
emerging from the separable potentials (see e.g. [1–3] and references therein) allow us to
construct eigenfunctions for bound states based on the requirement of termination for some
hypergeometric series. The resulting polynomial families are of great importance and typically
are known in great and fine detail (see e.g. [3]). Recently we proposed the unified approach for
the search for the Schrödinger equations possessing polynomial solutions [4], which contains
and extends in some aspects the Natanzon construction of solvable quantum potentials [5,6] as
well as Turbiner’s consideration [7] of the generalized Bochner problem. One of the earliest
important papers on solubility in quantum mechanics was [8]; the subsequent flow is enormous
and separated on the following main approaches.

Supersymmetric quantum mechanics (SUSY QM), having much in common with the
known Infeld–Hull factorization technique [9], but developed originally in a different context
in [10], gives much deeper insight into the solvability problem than ever before. In the first
stage of the development its significance seems to be actually overestimated, especially when it
was found that not only can series of well known solvable potentials be easily investigated using
it, but the supersymmetric WKB (SWKB) approximation leads to exact results for spectra just
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in the semiclassical limit. The understanding of the limits of SWKB obtained in [11] clarify
the situation and, surprisingly, lead to an increase of the interest in SUSY QM and especially
to its generalization (for a review see e.g. [12]; some interesting new results on the topic can
be found in [13–18]).

The second type of approach, developed separately, though close and becoming closer
and closer to SUSY QM, is numerous algebraic approaches, among which we would like to
mention relatively old classical papers [19,20] with extensive reference lists therein and some
recent ones [21–24] discussing different aspects of the problem.

Finally, the analytical ways of attacking the problem (that we also adhere to) are also very
numerous, so we only cite a few recent papers [25–27], demonstrating some new ideas but still
being away from the topics discussed in this paper.

The basic idea of the present work is that, similar to [7], we construct some general form
of ODEs (or PDEs) which has the polynomial solutions in a natural way due to its specific
though sufficiently general form. We then construct the Schrödinger equation associated with
the original equation for the polynomials using a number of transformations (point canonical
transformation and similarity transformation in the one-dimensional case).

It turns out that in this way some interesting questions and problems appear, which we
shall demonstrate in some specific examples in this paper. We will concentrate on some quasi-
exactly solvable (QES) problems, considering the method of regular construction of QES
potentials within a given family, and demonstrate the specific feature of our approach.

Though QES quantum problems are well known today [18, 28–33] (see also [34]
and references therein), systematically investigated starting from [35], there is no general
classification scheme for QES systems, and fundamental reasons leading to quasi-exact
solvability remain unclear. One more thing which remains mysterious is the orthogonality
properties of the polynomial families associated with QES problems. The latter were
investigated in early papers [32, 33, 35], considered as a nonclassical orthogonal family of
discrete variable E (Bender–Dunne polynomials), whereas in the later paper [29] the absence
of orthogonality for some specific cases was demonstrated. It is worthwhile to mention that an
additional symmetry arising in the considered cases, such as investigated in [36], can influence
significantly and sometimes unexpectedly the spectral properties of a system.

Therefore, a systematic approach to the construction and classification of QES problems
would be of great interest and it will be proposed hereafter with the discussion of some explicit
examples.

The general form of the second-order linear differential equations (SODEs) allowing
polynomial solutions at some specifically chosen values of their coefficients is [4]

L̂ky(x) = Pk+2(x)y
′′(x) + Qk+1(x)y

′(x) + Rk(x)y(x) = 0 (1)

where we introduce an index (k) for the operator to stress that this is the finite-dimensionally
generated operator family, fully defined by the choice of the coefficient functions Pk+2(x),
Qk+1(x) and Rk(x), which are polynomials of order k + 2, k + 1 and k, respectively.

It is easily understood that differential operator L̂k maps the space of the nth-order
polynomials Fn[x] into the space Fn+k[x] (see [4,7] for more details). As both spaces are finite
dimensional, the condition of nontrivial kernel Ker L̂ �= 0 leads simply to a linear algebraic
problem for operator representation in this space plus k additional conditions imposed on the
coefficients of coefficient functions. In terms of [7] the last means that such conditions are
those when the operator L̂[k] simply preserves Fn[x] (flag preserving conditions).

For k = 0 we have only the single condition of vanishing determinant of the matrix
corresponding to the operator L̂ in the basis of the monomials xi, i = 0 . . . n. This is just the
standard eigenvalue (Sturm–Liouville) problem [4]. If k > 0, as we will see, the situation is
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more interesting. We want to discuss here only the case k = 1 in detail, so that the appropriate
polynomial coefficients have at most third order. The consequences for higher k will be briefly
discussed in relation to the orthogonality problem only (see below).

We are going to demonstrate, and this will be the main goal of the paper, that the situations
with solvability for exactly solvable potentials and QES ones are in some sense complementary
to each other. The Schrödinger equation (and therefore quantum potential) for exactly solvable
cases can be associated with a single polynomial family in such a way that the ith excited state
(bound) eigenfunction is constructed through the ith-order polynomial of a given family [3]
having exactly i zeros (nodal points), typically as a finite hypergeometric series.

In QES cases, it turns out that we can construct a quantum potential having precisely n

known eigenstates all expressed through i different nth-order polynomials having 0, 1 . . . i

roots in the real domain, so that the wavefunction possesses the necessary properties (the ith
excited state wavefunction for the one-dimensional problem, according to the Sturm–Liouville
theory, must have precisely i roots in the domain) [2].

Let us start with the construction of the polynomial solutions for the equation (1).

2. QES quantum problems through polynomial ansatz for flag preserving differential
equations

Let us consider the equation (1) with k > 0 as a basic one, possessing polynomial solutions in
the form of the nth-order polynomial

yn(x) =
n∑

i=0

cix
i . (2)

Substituting and equating to zero coefficients at all powers of x, we have n + k + 1 coefficients
at different power of x to be equal to zero, whereas the number of unknown coefficients ci is
evidently n + 1. To implement the demands we have to impose k additional conditions on the
coefficients of polynomial P,Q,R (say pi, qi, ri), that correspond to the requirement for the
matrix of the linear system to have the range equal to n.

The above condition related to the topmost power (xn+k) simply reads

n(n − 1)pk+2 + nqk+1 + rk = 0 (3)

whilst the rest are a little more complicated, though they could be written in a closed form for
some explicit choice of k and n.

Now, we want to transform the equation (1) to the form of the Schrödinger equation.
This could be done as in [4] via a pair of transformations: the first one is a point canonical
transformation (variable change); the second one is a gauge transformation.

First, we make the variable change

x = F(u)

d

dx
= 1

F ′(u)
d

du
d2

dx2
= 1

F ′2(u)
d2

du2
− F ′′(u)

F ′3(u)
d

du

(4)

and introduce some as yet undefined but prescribed function of new coordinate ω(u) (which
we could define later for the sake of the most convenient choice)

ω2(u)[F ′(u)]2 = Pk+2(x) (5)
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to obtain

ω(u)2 y ′′(u) + Rk(F (u))y(u)

+
ω(u) y ′(u)

(
2 Qk+1(F (u)) + 2

√
Pk+2(F (u)) ω′(u) − P ′

k+2(F (u))
)

2
√
Pk+2(F (u))

= 0. (6)

Now we perform a similarity transformation Y (u) = exp(χ(u))y(u) and choose χ(u) in
such a way as to kill the first-derivative term. This means the condition

Qk+1(F (u)) ω(u)√
Pk+2(F (u))

+ ω(u) ω′(u) − ω(u) P ′
k+2(F (u))

2
√
Pk+2(F (u))

= −2ω(u)2χ ′(u) (7)

holds, that defines the gauge up to a constant.
Then we obtain the Schrödinger type equation in the form

Y ′′(u) + Y (u)

[
Rk(F (u))

ω(u)2 − Qk+1(F (u))2

4Pk+2(F (u)) ω(u)2 +
ω′(u)2

4ω(u)2

− ω′′(u)
2 ω(u)

− Q′
k+1(F (u))

2 ω(u)2 +
Qk+1(F (u)) P ′

k+2(F (u))

2 Pk+2(F (u)) ω(u)2

− 3P ′
k+2(F (u))

2

16Pk+2(F (u)) ω(u)2 +
P ′′

k+2(F (u))

4ω(u)2

]
= 0. (8)

The problem of the solvability of the Schrödinger equation (8) now can be formulated as
follows:

Can some fractions in (8) be rewritten to obtain a free parameter that could be interpreted
as an ‘energy parameter’?

The simple answer is evidently ‘yes’, for example by choosing ω(u) = 1 and keeping
nonzero free coefficient in Rk (r0 �= 0), though some more complicated schemes may be of
interest (see [4] and the appropriate discussion for the solvable case therein).

It is worthwhile to mention here that the case where there is no free parameter that could be
interpreted as E, which corresponds to the ‘zero-energy’ solution, usually does not correspond
to an eigenstate of the system (in contrast to the situation for a diffusion equation, where the
eigenstate E = 0 always exists).

Now we can consider some explicit examples to see what could be obtained in this way.

3. Construction for third-order polynomial coefficient functions

We start from equation (1) (with k = 1) and assume all coefficients are real. As the third-order
polynomial has at least one real root, without loss of generality we can put it equal to zero,
because the change of independent variable x → x−x0 leads to the same form of the equation
but with modified coefficients of the same order. So, allowing that other roots for polynomials
could be complex we rewrite (1) in a more convenient form for subsequent consideration (the
topmost coefficient in P3(x) can be always chosen as unity)

x(x − x1)(x − x2)y
′′(x) + α(x − x3)(x − x4)y

′(x) + (βx + γ )y(x) = 0 (9)

with x1, x2, x3, x4 being the roots of our coefficient polynomials.
Now, as already done, we are looking for the solution of (9) in the form of an nth-order

polynomial

yn(x) =
n∑

i=0

cix
i (10)
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leading to the only condition to hold:

n(n − 1) + nα + β = 0. (11)

The remaining equations are simply homogeneous linear equations for n + 1 coefficients ci .
The condition of a nontrivial solution is the condition of vanishing of the determinant of the
following three-diagonal matrix with nonzero elements expressed as (i = 1, . . . , n):

Mi,i = γ − (i − 1)(x3 + x4)α − (i − 2)(i − 1)(x1 + x2) (12)

Mi−1,i = (i − 1)(i − 2)x1x2 + (i − 1)x3x4α (13)

Mi+1,i = (i − 1)(i − 2) + (i − 1)α + β (14)

that leads, as is easy to see, to the following three-term recurrence relation for the determinant
Di , i = 1, . . . n:

Di+1(γ ) = Di(γ )(γ − i(x3 + x4)α − i(i − 1)(x1 + x2))

−Di−1(γ ) ((i − 1)(i − 2) + (i − 1)α + β)(ix3x4α + i(i − 1)x1x2) (15)

with D1 = γ and D2 = −γ ((x3 + x4)α + γ ) − βx3x4α.
It is easy to show that these ith-order polynomials Di as functions of γ cannot be related

to the classical orthogonal polynomial families (though in this specific case they have much
in common with Bender–Dunne polynomials [35]). Indeed, let us assume the opposite, then
the classical Rodrigues’ formula for the orthogonal polynomial family with the weight W(x)

reads [3]

pi(x) = an

W(x)

(
d

dx

)i (
gi(x)W(x)

)
(16)

with g(x) being a polynomial independent of i. We can use this formula for the two lowest
polynomialsDi and obtain the system of two differential equations defining unknown functions
g(x) and W(x). Then we have

g(x)W ′(x) + W(x)( g′(x) − x) = 0

2 g(x)W(x) g′′(x) + 2 W(x) g′(x)2 + 4 g(x) g′(x)W ′(x)
+g(x)2 W ′′(x) + (αβx3x4 − (x − α(x3 + x4))x) W(x) = 0.

(17)

The solution of the first equation (up to a nonessential constant multiplier) has the form

W(x) = g(x)−1 exp

{ ∫
x

g(x)
dx

}
(18)

that gives after its substitution into the second equation of (17) the following nonlinear SODE
for g(x):

g(x)g′′(x) + x g′(x) + g(x) + α ((x3 + x4) x + x3 x4 β) = 0. (19)

It is easy to see that (19) indeed has a polynomial solution, namely assuming g(x) in the form∑k
i=0 gix

i we immediately obtain two possible solutions

g(1)(x) = −3x2

2
+ α(x3 + x4) x +

α βx3x4

2
(20)

g(2)(x) = −α βx3x4 − (x3 + x4) α x

2
. (21)

The direct substitution would lead to a fairly complicated expression for arbitrary x3, x4 for a
polynomial with the order higher than two, but to demonstrate the incorrectness of our initial
hypothesis we simply obtain the explicit expression for the constructed family for the case
we will investigate in the following, namely when x1 = −x2 = ξ (symmetric case). Then,
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the first- and the second-order polynomials we constructed will coincide with D1,D2 as they
should, but for the third- and fourth-order orthogonal polynomial family we have

p3(x) = x3 +
3α β x ξ 2

7
(22)

and

p4(x) = x4 +
6α β x2 ξ 2

13
+

3α2 β2 ξ 4

91
(23)

whereas the direct calculation based on the recurrence relation gives for D3 and D4

D3(x) = x3 + (2 α2 + 3α β)ξ 2x (24)

and

D4(x) = x4 + 2(α + 3β + 3)αξ 2x2 + 3(2α + β + 2)α2β ξ 4. (25)

As one can see the third- and fourth-order polynomials Di differ from those constructed with
an assumption that they form a classical orthogonal polynomial family, which proves our
statement.

The analytical solution of the three-term recurrence relation is just another problem, and
for our purpose it will be sufficient to know that we can solve the appropriate characteristic
equation, at least for small n.

At this point it is worthwhile to say a little more about the general case k > 1. As
one can easily see from (1) and (9) it is just the k = 1 condition that leads to three-term
recurrence relation (15), whereas for arbitrary k we have to obtain generally the (k+2)th-order
recurrence relation. It is evident that we still have quasi-exact solvability properties, though
the polynomials in this case are evidently not orthogonal with any weight function. This is
precisely the result demonstrated in [29] for a particular case, which we automatically obtain
based on rather general arguments.

Now, let us start with the transformation of the equation for polynomials to the Schrödinger
equation and the investigation of topologically different cases.

4. Schrödinger equations associated with flag preserving operators for k = 1

We have to distinguish three regular cases, namely when (i) the polynomial A3 in (9) has one
root of order three, (ii) two different roots and (iii) three different roots.

Additionally, irregular cases are realized when the order of A3 is less than three. We will
not consider these here.

The first case (i) of interest is when all roots of A3 are coincident, that is A3(x) = x3.
Then the equation reads

x3y ′′(x) + α(x − x3)(x − x4)y
′(x) + (βx + γ )y(x) = 0. (26)

In accordance with [4] we perform the point canonical transformation (variable change)
x = 4u−2, y(x) → y(u), and the similarity (gauge transformation) for the wavefunction
Y (u) = exp(χ(u))y(u) with

χ(u) = −αx3x4u
4

64
+

α(x3 + x4)u
2

8
+

(
3

2
− α

)
log(u) (27)

to obtain the Schrödinger equation of the form

Y ′′(u) + (ε − V (u)) Y (u) = 0 (28)
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with the potential V (u) in the following form:

V (u) = A

u2
+ Bu2 + Cu4 + Du6 (29)

where we introduced the new parameters A,B,C,D and ε, which are expressed through the
parameters α, β, x3, x4 as

A = α2 − 2 α − 4β + 3
4 (30)

B = α(α(x2
4 + 4x3x4 + x2

3 ) − 6x3x4)

16
(31)

C = −α2x3x4(x3 + x4)

32
(32)

D = α2x3
2x4

2

256
(33)

ε = γ +
α(α − 2)(x3 + x4)

2
. (34)

As one can easily see the case when one of the roots x3, x4 is equal to zero immediately
leads to the ordinary radial harmonic oscillator problem. It is nontrivial to discover this
when looking at the initial equation rather than at the Schrödinger one. It occurs due to the
existence of the common roots of A3(x) and A2(x). Indeed, it is possible to show, though
we do not intend to do it here, as it will be the subject of a separate publication, that if
the coefficient polynomial Ak+2(x) shares a root (xi) with Ak+1(x), in the equation (1), the
substitution y(x) = (x − xi)

pu(x) (with definitely chosen p) will reduce the equation to an
equation of the same type, namely as in equation (1), but with the highest order of polynomial
coefficients diminished by one, that is to say that now we have the case k → k − 1. Thus, for
the third-order case it simply leads to the second order, that allowed comprehensive analysis
in terms of the equation of hypergeometric type [4].

We can now look for the solution of equation (28) corresponding to some low-order
polynomials. Let us start looking for the first-order polynomial solution (n = 1). Then, the
condition (3) reads β = −α and from (26) we obtain two possible nontrivial solutions (cn = 1
as a normalization condition)

c
(1)
0 = −x4 γ (1) = αx3 (35)

c
(2)
0 = −x3 γ (2) = αx4 (36)

that gives for Y1(u)

Y
(1)
1 (u) = exp

{
−αx3x4u

4

64
+

α(x3 + x4)u
2

8

} (
4

u2
− x4

)
u

3−2 α
2 (37)

Y
(2)
1 (u) = exp

{
−αx3x4u

4

64
+

α(x3 + x4)u
2

8

} (
4

u2
− x3

)
u

3−2 α
2 . (38)

It is evident that we have to put an additional requirement on the domain of the parameters
α, x3, x4 to insure correct behaviour of the energy and of the wavefunctions. Without diving
into technical difficulties (and losing significant features of the problem) it is better to consider
the case when the appropriate conditions become maximally simple, so in what follows we
will talk about the symmetric case when x3 = −x4 = ξ > 0. This leads to the vanishing of
the fourth-order term in the potential (29) and as we said to simpler conditions imposed on the
parameters of the allowed region.

Firstly, to obtain real spectra we must have ξ ∈ R so that the polynomial A2 must have
real roots. The vanishing of the wavefunction at infinity leads to the restriction on α < 0,
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but we have to impose additionally the regularity condition at u = 0. At first glance we can
impose the finiteness of the norm of the wavefunction, that gives α � −1/4, but it is easy to
see that the quantum potential in (30) is repulsive and infinite at u = 0 when the parameter
α > −1/2 or α � −3/2 (after substitution of the value for β through α, of course). The
latter means that we must put the boundary condition Y (u)|u=0 = 0 for the above-mentioned
intervals, that leads to the α � −1/2 requirement.

The constructed solutions, as one can see, are the two lowest bound states of the system;
the eigenfunction (37) corresponds to the ground state and (38) to the first excited state for the
potential

V (u) = α2 + 2 α + 3
4

u2
+

α(α − 3)ξ 2u2

8
+

α2ξ 4u4

256
. (39)

In a similar way, for n = 2 we obtain the following three solutions for c0, c1, γ :

c
(1)
0 = − αξ 2

α + 1
c
(1)
1 = 0 γ (1) = 0

c
(±)
0 = αξ 2

α + 2
c
(±)
1 = ±ξ

√
2α (2 α + 3)

α + 2
γ (±) = ±ξ

√
2α (2α + 3).

(40)

Then, the appropriate eigenfunctions are given by

Y (1)(u) = e
αu4

64 u
3
2 −α

(
16

u4
− αξ 2

α + 1

)
(41)

Y (±)(u) = e
αu4

64 u
3
2 −α

(
16

u4
+

αξ 2

α + 2
± 4ξ

√
2α (2 α + 3)

(α + 2)u2

)
. (42)

Now, the admissible region for the parameter α is given by α � −5/2. Then the constructed
eigenstates represent the ground and the first two excited states for the potential

V (u) = α2ξ 4u6

256
− αξ 2 (α − 3) u2

8
+

4α2 + 24α + 35

4 u2
. (43)

The construction of a higher-order polynomial solution can be easily continued but the main
feature of the problem can be expressed already. As we saw, looking for the solution in the
form of an nth-order polynomial and imposing relation (3) between α and β we obtain a
specific quantum potential and for this potential the proposed methods allow us to construct
just n + 1 eigenstates corresponding to different values of the parameter γ determined by the
condition of vanishing matrix determinant. At least in some region of these free parameters
(like α in the considered case) the last gives the allowed eigenstates starting from the ground
and up to the nth excited state of the quantum system. At the same time, all these eigenstates
are constructed on the polynomials of the same order, though the number of real roots differs
from one polynomial to another. This is in evident contradistinction with the solvable case
where the eigenfunctions for the nth excited state of the system correspond precisely to the
nth-order polynomial having n real roots in the domain, and belonging to the same family of
orthogonal polynomials.

It is relatively easy to check that the appropriate eigenfunctions we constructed are
orthogonal, as they must be.

The main question which immediately emerges is how flexible are we in adjusting the
parameters α, ξ , if we want to construct the solution for the equation of the form (26). So
what should we do if we originally have the parameters A,B,C,D and ε as in (30)–(33)
(for the symmetric case we consider C = 0 identically)? Let us try to express α etc through
A,B,D, ε.
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If we succeed in solving the equation (9) to construct polynomials and in obtaining the
quantization condition for γ , then we obtain both the energy spectrum and the eigenfunctions
of the bound states for the problem. Let us complete this program.

We will consider the equations (30)–(33) as the system of equations for the unknown α, ξ ,
satisfying the condition β = −nα − n(n − 1). Then, equating the coefficients at all order
monomials ui for the potential V (u) in (39) we obtain the system

− 3
4 + A + 2 α − α2 + 4 ((1 − n) n − nα) = 0 (44)

B − 3α ξ 2

8
+

α2 ξ 2

8
= 0 (45)

D − ξ 4 α2

256
= 0. (46)

From the last equation we have for ξ 2, expressed through D,α,

ξ 2 = ±16

√
D

α
. (47)

Then, after substituting the above into (45) we will have the following consistency condition
for the parameters:

B = ±2 (α − 3)√
D

. (48)

Solving the equation (44) for α we obtain

α = 1 ± 1
2

√
1 + 4A − 2n. (49)

Finally, substituting the expression for α into consistency condition (48) we rewrite it in a final
form

B = 6
√
D −

√
D

(
2 ±

√
1 + 4A − 4 n

)
. (50)

So, having the definite parameters of the quantum potential A,B,D we have to satisfy only
the one condition (50) to obtain the quasi-solvable potential with a definite number of bound
states (namely n).

We consider now the next topologically different case when A3(x) has two different
roots; evidently they have to be real. Again, we can place the first one at the origin, and,
moreover, changing the scale of x we can put the second one at the position x1 = x2 = 1.
Then A3(x) = x(x − 1)2. The variable change reads x = F(u) = coth2(u/2); the gauge
transformation turns out to be

χ(u) = −1

4
(x3 − 1)(x4 − 1) α cosh u +

(
x3 x4 α − 1

2

)
log

(
cosh

u

2

)

+

(
3

2
− α

)
log

(
sinh

u

2

)
. (51)

Then we obtain the Schrödinger equation with the potential in the form

V (u) = 1

16
sinh4 u

2

[
A + B coth2 u

2
+ C coth4 u

2
+ D coth6 u

2
+ E tanh2 u

2

]
(52)

with the introduced parameters A,B,C,D,E expressed through the old ones as

A = −8 + 32α x3 x4 − 8α2 x3
2 x4 − 8α2 x3 x4

2

B = 2
[

5 − 4 (−1 + 2 x4 + x3 (2 + 3 x4)) α

+ 2
(
x3

2 + 4 x3 x4 + x4
2
)
α2 + 8 n (−1 + n + α)

]
C = −8

(
α2 (x3 + x4) − 2α (x3 + x4 − 2) + 1

)
D = (2 α + 1) (2 α + 3)

E = (2α x3 x4 − 3) (2α x3 x4 − 1)

(53)
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where we have used the relation (3) between α and β.
In a similar way as we did in the previous case, one can proceed further to obtain some

lower eigenstates for the problem with potential (52) and define the region of the parameters,
allowing the existence of bound states. We do not intend to perform this routine task as the
main features of such a class of the potentials are already exposed.

We discuss now the last topologically different cases when polynomial A3(x) has three
different roots (we allow both real and complex roots for it).

As the formulas in this case become a little complicated, though the main features can
be observed in some relatively simple examples, we concentrate on a most symmetric case,
namely we assume that both roots of A3(x) and A2(x) are symmetric with respect to x = 0
(and those of A3(x) all are real). Then, again, we can move the position of the roots for A3(x)

into 0,±1 and define the roots A2(x) as ξ .
Then the change of variables reads

u =
∫ x

0

dv√
v(v2 − 1)

= −2 F(−i ArcSinh(
√
x) | − 1) (54)

where F(φ |m) is an incomplete elliptic integral of the first kind [37], so that inverting it we
have for x = F(u) (do not confuse F with F)

x = F(u) = sn2
(u

2
| − 1

)
(55)

where sn is an elliptic sine function [37].
The gauge transformation in this case can be represented implicitly by the following

integral:

χ(u) =
∫ u

u0

1 − 2 α ξ 2 + (−3 + 2 α) sn4( u
2 ,−1)

4 sn(u
2 ,−1)

√
1 − sn2( u

2 ,−1)
√

1 + sn2( u
2 ,−1)

du. (56)

The quantum potential has the form

V (u) = 1

16 sn2
(
u
2 | − 1

) (
sn4

(
u
2 | − 1

) − 1
)
{

− 3 + 8α ξ 2 − 4α2 ξ 4

+ 2 (−3 − 8 ((1 − n) n − nα) + 4α2 ξ 2 + α (4 − 12 ξ 2)) sn4
(u

2
| − 1

)

+(−3 + 8α − 4α2 + 16 ((1 − n) n − nα)) sn8
(u

2
| − 1

) }
. (57)

As the elliptic functions are periodic, we obtain a family of quasi-solvable potentials which
generalizes in some sense the exactly solvable Pöschl–Teller potentials [1]. Moreover, similar
to Pöschl–Teller potentials, this family of potentials evidently does not correspond to any
band structure, because the potential, being a periodic one, has singular points that impose a
zero-value boundary condition on the wavefunctions there.

The potentials of the given class are represented in figures 1–3 for some specific values
of the parameters α, ξ and n to demonstrate the richness of their behaviour.

The degenerate cases when A3(x) is reduced to a lower-order polynomial as we know
from [4] could also be interesting, but we do not intend to consider them here but in a separate
publication.

5. Discussion

To summarize, we implement the method proposed by us earlier for the investigation of
the quasi-solvability of some quantum problems which can be transformed to the SODE
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Figure 1. Quantum potential V (u) in (57) with the following parameter values: α = −1, ξ =
3, n = 1.
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Figure 2. Quantum potential V (u) in (57) with the following parameter values: α = −1, ξ =
2, n = 50.
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Figure 3. Quantum potential V (u) in (57) with the following parameter values: α = 1, ξ =
2, n = 50.
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possessing polynomial solutions, considering in detail the case of the third-order polynomial
as a coefficient function. In contrast to the solvable case all eigenstates constructed here are
polynomials of the same order, whereas the number of their real roots varies from zero up to
the number of the eigenstates allowed to be constructed algebraically.
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